
Hidden Integration Costs in Online
Controlled Experimentation Platforms

Nick Ross
Director, Data Science Clinic
University of Chicago

• Introduction

• Presentation Motivation

• Build vs. Buy

• Some Thoughts and Ramblings
• Integration Cost Spirals
• Historical Data / Exporting Data
• Rabbit Holes
• Unavailable Features

• Conclusion

Presentation Overview

• University of Chicago (2022-Present)
• Director, Data Science Clinic
• Instructional Professor

• Director of Backend Engineering & Data Science at The Meta (Not
FB, Kovaak) 2020-2022

• Assistant Professor of Data Science at USF (2014-2020)
• Director of Industry-Academic Partnership

• Director of Analytics at Sega (2014-2015)

• Director of Analytics, Backend Engineering and User Acquisition
at TinyCo (2011-2014)

• PhD UCLA 2011 (Management)

• Senior Consultant Bates White (2002-2006)

About me

Some Games I’ve Worked on

• Online Controlled Experiments (”OCE”s) are a powerful tool in
product development.

• Deciding how to implement them is a classic build-vs-buy decision
that can have far reaching and long-term effects on a product.

• Tons of good resources on this decision but it tends to deemphasize
(or gloss over completely) integration costs.

• This talk will highlight a number of these “hidden” integration costs
and how they can bite you in the a**.

Talk Motivation

• There are a host of 3rd party systems for OCEs:
• Optimizely
• KISS Metrics
• Split
• Google Optimize
• Launch Darkly

• The question is should we use one of these or build our own?

Build vs. Buy

• Taken from Graham
McNicoll’s Medium Page,
but very representative.

• Lots and lots and lots of
version of this can be
found.

Build vs. Buy: Strategic

https://medium.com/growth-book/a-b-testing-platforms-build-vs-buy-dfb8604e77e

• Ronny Kohavi has a great
series of posts and documents
around different vendors, their
products and pricing.

• Much of the work focuses on
specific features of the platform
and price (duh).

• Logic: Minimize cost given a set
of requirements

Build vs. Buy: Costing

Build vs. Buy

• If you read through the build vs. buy literature, you will find a few
consistent take-aways:
• Building costs are way more than you thought
• Deciding on which 3rd party to go with it a fraught decision

and many people get it wrong.
• There is a lot of information, but much of this conversation shies

away from the integration aspects.
• Integration aspects are company and code base specific.
• So, given that this is already expensive and hard, what do you

want to add to the conversation?

Hot Take

Integration Costs are much higher than you think
and, in many cases, should bias you toward
building it yourself.

Why?

• We (almost always) make the build vs. buy decision against the
backdrop of our existing tools and infrastructure

• Getting an OCE platform “working” vs. getting an OCE Platform
“Integrated”

• Integrating and using a suite of 3rd party tools and internal
infrastructure is costly.

• Sooo… what do you mean by “Integrating”?
• To explain this, lets give some more context if we decide to

“Buy” an OCE platform

Typical (simplified) Systems
Diagram e-commerce platform

Client Devices

Internal Servers

3rd Party Systems

External APIs / 3rd party systems

• Marketing APIs:
• Push Notifications
• Emails services
• CRM Services (HubSpot, Salesforce)
• Attribution Systems

• ML systems which do overnight batch process
• A/B Testing System
• External Analytics Systems
• Inventory Management System
• Shipping system
• Etc.

Simple Example: e-commerce
platform

• Our internal server currently keeps track of purchases
• Run an A/B test on a new sales flow and want to know

if it increases sales to both “new” customers as well as
“existing” customers.

• What information must be sent where?

Simple Example: e-commerce
platform

• Our internal server currently keeps track of purchases
• Run an A/B test on a new sales flow and want to know

if it increases sales to both “new” customers as well as
“existing” customers.

• What information must be sent where?
• Client <> AB Test system to know which sales flow
• Internal Server <> AB Test system to know sales status
• Historical Data must be loaded into the AB Test system in

order to balance the cohorts and ID new vs. existing sales

Typical Systems Diagram

Client Devices

Internal Servers

3rd Party Systems

Simple Example: e-commerce
platform

• I want to run a test on email marketing:
• If a person puts something in their cart I want to send them an

email
• Test the format of a few subject lines
• Same customer breakdown: Existing vs. New customers, etc.

• What information must be sent where?
• Client <> AB Test system to know which sales flow
• Server <> AB Test system to know when a sales is completed
• Historical Data must be loaded into the AB Test system in

order to balance the cohorts and ID new vs. existing sales
• Marketing <> AB Test
• Marketing <> Product

Typical Systems Diagram

Client Devices

Internal Servers

3rd Party Systems

WAIT

• How do I connect mailchimp (our 3rd party email marketing
solution) to Split.io (our 3rd party OCE platform)?

Typical Systems Diagram

Client Devices

Internal Servers

3rd Party Systems

Another
Build vs.
Buy
Decision

Future

• You can probably guess what will eventually happen.

Real World System Diagram

Client Devices

Internal Servers

3rd Party Systems

Some
backend
service

Single Point of Failure Alternative

Client Devices

Internal Servers

3rd Party Systems

Some
backend
service

Why are these “hidden” costs?

• Moving from “working” to “fully integrated”
• Getting back to build vs. buy:

• Discussion often centers on working – not on full integration
• Moving from “working” to full integration is often more costly than

initial working stage:
• May require deeply leveraging internal systems

• Or changing them!
• May require a deep understanding of domain and system

context information

Why are these “hidden” costs?

• Every Line of Code is Liability / Cost
• Every connection in that systems diagram requires beyond the

initial build:
• Maintenance
• Updating as new features are added
• Testing, logging and alerting systems
• All of which are engineering time ($$)

• You can imagine the conversation:
• PM: Now that our AB testing platform is up and running let's

run a test on email!
• Engineer: To do that we need to integrate our marketing

provider.
• PM: What? I thought we were already running.
• Engineer: Only for front-end design, not for email testing.

Example: Exporting Data

• All major OCE platforms can export data if you want to move to
another platform (or just keep the data yourself).

• OCE Platforms don’t like this – it’s a form of vendor lock in.
• Data extraction is usually limited and complex:

• Ex #1: Requires setting up a special AWS S3 Bucket
• Ex #2: Creation of special “export” reports which contain

subsets of the data.
• Ex #3: Can only do raw data “going forward”

Example: Importing Historical Data

• If you want your OCE to be be able to leverage historical data:
• Different treatments based on specific properties
• Visualizations, cross-tabs, downstream analysis, etc.

• This historical information needs to be accessible by the OCE:
• API?
• Passing the data around (leading to larger payloads)
• Consistent identification?

• Organizing and providing access requires building additional
tooling around your historical data.

Example: Data Differences / Rabbit
Holes

• Every dashboard is a liability
• The information in an OCE dashboards is often duplicative of

information in already existing dashboards
• What happens when they aren’t the same?
• Let’s say that:

• OCE Dashboard says there were 101 sales yesterday
• Internal dashboard says 99 sales yesterday

• “Hidden” Costs:
• Reputational
• Investigation Costs

Other hidden costs: Unavailable
Features

• OCE platforms have features
• Marketing platform have features
• Internal systems have features
• What is available to the end user?

Marketing Internal System OCE

Feature #1 Feature #1 Feature #1

Feature #2 Feature #2 Feature #2

Feature #3 Feature #3

Feature #4 Feature #4

Other hidden costs: Unavailable
Features

• OCE platforms have features
• Marketing platform have features
• Internal systems have features
• What is available to the end user?

Marketing Internal System OCE

Feature #1 XXX XXX

Feature #2 Feature #2 XXX

Feature #3 XXX Feature #3

Feature #4 Feature #4 Feature #4

XXX XXX Feature #5

XXX XXX Feature #6

Conclusion

• Most of the build vs. buy discussion shies away from talking about
integration costs
• Company, tech stack and feature-use specific
• Hard to quantify

• Moving from getting the platform “working” to getting the
platform “integrated” is (IMO):
• Much higher cost than getting an OCE platform “working”

• Specific Costs:
• Secondary Integrations
• Unavailable Features
• Rabbit Holes
• Historical Data
• Data Exports

