

Big Data

Nicholas Ross, PhD

Introduction

Biography

Education:

- Mathematics Undergraduate: UC Berkeley
- Economics Masters: UC Davis
- Accounting PhD: UCLA

Most Importantly!

Work Experience

Bates White

Litigation Consulting

TinyCo

• Director of Analytics

Sega

• Director of Analytics

Currently:

 Professor of Accounting and Analytics

Things not covered in this talk

Big data is a Thing!

When accounting meets Big Data

September 8, 2015 By B

Accountants Dealing with Big Data and Other Big Issues

NEW YORK (JULY 22, 2014) BY MICHAEL COHN

FEATURE / FROM CGMA MAGAZINE

Why accountants should own Big Data

BY JACK HAGEL October 31, 2013

Big data is Important!

Big Data = Big Opportunities

Posted by Arleen Thomas, CPA, CGMA on Feb 20, 2015

Accountancy Futures Academy

Big data: its power and perils

FEATURE / FROM CGMA MAGAZINE

Why accountants should own Big Data

BY JACK HAGEL October 31, 2013

Big data is Hard!

accounting weв		A&A 🗸	Practice 🗸	Tax 🗸	Technology 🗸	Community 🗸	More 🗸	Q
Technology	» Trends							

Big Data Cited as Top Issue for Some CPAs

The Big Problem with Big Data for Big Accounting Firms

🗘 🖸 🕜 🛅 🔁 📮 27

Accounting's Big Data Problem

Reality is swiftly outpacing the ability of accountants to embrace Big Data. How can they catch up?

#AICPAfvs

Management Accounting

David M. Katz

March 4, 2014 | CFO.com | US

Learning Objectives

- How to evaluate data which characteristics are important when evaluating a dataset against current capabilities
- Determine how to match workload against available tools
- Understand big data team structure, including what skills and roles are needed to hire to build a worldclass team

Learning Objectives

- How do we usefully define big data?
- What are the Critical Success Factors ("CSFs") for successfully working with big data?
- What your team composition says about your current big data abilities?

My strong opinions

Investing in big data technology is rarely a long-term win

- Costs
- Change / Lock-in

Big data isn't your core competency

- Big data is a tool
- If you are a gold miner you need a good shovel, but you don't need to own a shovel factory

Analysis isn't the hard part

Overview

Introduction

- CSFs of big data
- Defining big data
- Big data team roles
- Matching engagements to teams
- What is the current "standard" big data technology stack
- Hiring

Big Data Critical Success Factors:

Reproducible Processes

- Do my tools generate the same answers repeatedly?
- Who or what guarantees that my analysis generates the same answers each time?

Ease of Iteration

- As my understanding changes, how does that work its way back into my analysis and numbers?
- What is the analysis "round-trip" time?

Critical Success Factors (cont.)

Transparency

- What does my verification process look like?
- How do I check a junior employee's work product?

Ease of the deep dive

• Can I quickly pull an Excel-sized cut of the data?

Cost

• Are my costs higher than the value of the engagement?

Overview

Introduction

- CSFs of big data
- Defining big data
- Big data team roles
- Matching engagements to teams
- What is the current "standard" big data technology stack
- Hiring

What is *Big* Data?

Data that doesn't work in your current environment

• Specific to your own operations

Articulate:

- What am I capable of?
- What is my next engagement?

Use the 3 V's:

- Volume
- Velocity
- Variety

3 V's of Data

Volume: How much data do I have?

- Easiest dimension to understand:
 - "I have a 50 Megabyte excel file"
 - "The database has 200 million rows"
- Most of the time described in bytes, or, for some applications, row or object counts is used

3 V's of data

Velocity: At what rate is data being created?

- How much *new* data is being created?
- Example: every month, your client sends you 2 MB of that month's inventory data
- Many, if not most, engagements will have a velocity of zero
- If the velocity is greater than zero, need to have an Extract, Transform and Loading ("ETL") plan.
 - How frequently does data load?
 - When does it load?
 - What checks do I have in place to verify data integrity?

3 V's of data

Variety: How many different forms does my data take?

- What are the number of different data sets and sources in this engagement?
- Each unique dataset requires taking time to evaluate and understand, as well as to clean and merge
- The same data from different sources should be considered different data

Variety: Structured vs. Unstructured

Structured data:

• "Normal" data that fits into rows and column easily

Unstructured data:

- The opposite: data without an easy organization structure
- Examples: emails, voicemails, medical records, books and images
- Unstructured data is generally more costly to understand and analyze
- **This presentation focuses on structured data**

Recap

We now can define big data is (3 V's) and what we want (CSF's):

- What is your team's capability?
- What types of engagements can you handle?

What should our team look like if we want to expand our capabilities?

Overview

- Introduction
- CSFs of big data
- Defining big data
- Big data team roles
- Matching engagements to teams
- What is the current "standard" big data technology stack
- Hiring

Team roles

Roles: Junior / Senior Data Analyst

Kevin and Rebecca:

- \$35-\$100K
- R, Stata and Excel

Rebecca

• 2 years' experience

Kevin

• Graduated 2 months ago

Hiring CSF:

• Business applied to data

Roles: Data Engineer

Travis

- \$100 \$200K
- Python, Java and AWS
- 5+ years' experience

Hiring CSF:

- Can solve own problems
- Pass a code test
- Cloud computing
- Always looks bored

Roles: IT / DBA

Dell, our IT guy

- 50K+
- Server configuration
 Basic database maintenance
 CSF:
 - Limited database capabilities

Overview

- Introduction
- CSFs of big data
- Defining big data
- Big data team roles
- Matching engagements to teams
- What is the current "standard" big data technology stack
- Hiring

Matching team to engagements

0 V Problem: Just Kevin and Rebecca

Can do everything when all 3 V's are small:

- Less than a few GB of data
- No more than a few different datasets
- Data is static it's velocity is essentially zero
- Excel, Stata or R and some bootstrapping around how analysis is shared
- Biggest Risk: Reproducibility
- If any V increases, chaos ensues

1 V Problem: Kevin, Rebecca and Dell

Problem with 1 V...

- Volume: Maybe more data (A few TB)
- Or Velocity: Maybe data loads occurring once or twice a day, but not significantly large data
- Or Variety: Maybe dataset variety increasing significantly

Now:

- Kevin and Rebecca learn SQL
- Dell sets up a beefy server at the office
- Dell shows Kevin and Rebecca some scripting tools

Biggest Risk: Ease of Iteration

• What is Dell's primary responsibility?

>1 V Problem: Kevin, Rebecca and Travis

>1 V issue:

- Velocity: Large amount (> 500 MBs) loaded daily
- Volume: Hundreds of TBs
- Variety: Significant variety of sources

Sorry Dell!

• Cloud services (such as AWS) now cost effective

Now:

- Kevin and Rebecca use SQL
- Travis writes scripts to help Kevin and Rebecca when they hit their limits

Biggest Risk: Cost

Key take-away: Analysis vs. storage

As V problems increase:

- The distinction between working on data "storage" vs. data "analysis" increase
- Rebecca and Kevin can do analysis with some storage, but will get stuck and need help:
 - For small V problems, Dell can assist
 - For large V problems, call Travis

Cost Example

15 TB of data

Year-long engagement

- Travis could spend time on another engagement
- Doesn't include benefits, etc.

Using AWS

• About \$4K month, SQL style server

Cost	Yearly Total			
Travis	\$150,000			
10 Med. Servers @ 3TB	\$50,000			
Rebecca and Kevin (75K Per)	\$150,000			
Total	\$350,000			

Overview

- Introduction
- **CSFs of big data**
- Defining big data
- Big data team roles
- Matching engagements to teams
- What is the current "standard" big data technology stack
- Hiring

Standard Tooling

SQL

- Established technology
- Easy for analysts to learn
- Requires configuration work in proportion to data size!

The "Current" Standard Stack:

- Python scripts that load data
- Amazon Redshift (SQL Server)

Cost and Tooling caveat

Use technology properly:

- Lose leverage of Kevin and Rebecca: Turn them into data monkeys, not analysts
- Costs will be even higher if Kevin and Rebecca aren't utilized efficiently

Overview

- Introduction
- **CSFs of big data**
- Defining big data
- Big data team roles
- Matching engagements to teams
- What is the current "standard" big data technology stack
- Hiring

On hiring: Kevin, Rebecca and Travis

Hiring in data is hard

Common data employee types:

- Data Analysts
- Data Scientists
- Data Engineers
- IT

Data scientists are costly and often unnecessary:

- Skilled at implementing "new" things not following process
- **Turnover is high**
- Cross-discipline hires are even more difficult
 - Accounting

Thanks!

Feel free to contact me on LinkedIn or via email with any questions!

Linkedin:

- <u>https://www.linkedin.com/in/drdata</u>
- Email:
 - nickross510@gmail.com

