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About me Academically

m PhD at UCLA in Management (2012)
m Masters in Economics at UC Davis (2007)
m BA in Applied Math/Statistics at UC Berkeley (2002)



About me (Professionally)

m Director of Backend Engineering & Data Science at The
Meta (Kovaak)

m Assistant Professor of Data Science at USF
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— Director of Industry-Academic Partnership
m Director of Analytics at Sega
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m Director of Analytics and User Acquisition at TinyCo
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m Senior Consultant Bates White
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Motivation & Goals

m Currently building an AB-testing system

m Going to cover a few issues that often aren’t covered
when learning the statistics (at least when | was

taught this)

m Hopefully you'll come away with a better
understanding of some of the real world difficulties

of A/B Testing.



WHAT'S AN A/B TEST



A/B Testing: What?

m An A/B test is a controlled experiment

m Interest lies in determining how some metric of

interest (i.e., a KPI) is causally related to one or more
factors

m Different levels of these factors define two or more
experimental conditions (aka: variants, buckets,
cells, treatments)



A/B Testing: What?

m Experimenta
conditions

units are randomly assigned to these

m Randomization principle:

o Random assignment ensures that users in different
conditions will be homogenous and the only collective
difference among them is the fact that they're in
different conditions.

o So any difference observed among the conditions
should be due only to that which the experimenter is

controlling



A/B Testing: What?
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A/B Testing: What?
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A/B Testing: What?

m Pick the winner:

o The metric of interest is compared across the
conditions, and the condition that optimizes the
metric is declared the winner
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A/B Testing: What?

Unlimited movies, TV
shows, and more.

Watch anywhere. Cancel anytime,

TRY IT NOW >

Enjoy on your TV_ LIKE FATHER

Watch on Smart TVs, Playstation, Xbox,

Chromecast, Apple TV, Blu-ray players, and
more. sl |

TRY IT NOW >
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A/B Testing: What?

Unlimited movies, TV
shows, and more.

a Watch anywhere. Cancel anytime.

TRY IT NOW >

Enjoy on your TV.

Watch on Smart TVs, Playstation, Xbox,
Chromecast, Apple TV, Blu-ray players, and
maore.

TRY IT NOW >
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A/B Testing: What?

Unlimited movies, TV
shows, and more.

Q Watch anywhere. Cancel anytime.

TRY IT NOW > Q

Enjoy on your TV.

Watch on Smart TVs, Playstation, Xbox,
Chromecast, Apple TV, Blu-ray players, and
more.

TRY IT NOW >
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B Testing: What?
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B Testing: What?
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A/B Testing: What?
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A/B Testing: What?
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0 Popular right now
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A/B Testing: What?
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A/B Testing: Who?

m Large organizations such as Google, Facebook,
Amazon, Microsoft are running 10,000+
experiments per year

m Linkedln is reportedly simultaneously running 400+
experiments per day

m 1,000’s of companies use tools such as Optimizely,
KissMetrics, MixPanel, VWO and Split.io to run tests

o Optimizely has around 500 employees and is
reportedly worth $500M+ ]
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A/B Testing: Where?

m User acquisition funnels

m User engagement mechanics

m Esthetic features

m Checko lenc

Free ion
nd
Ad aign
Il to action language

ML algorithms

m User retention mechanics 6
m Email promotions
m Website layout
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A/B Testing: Why?

m A controlled experiment is the only way to cleanly
establish causal relationships.

m It facilitates data-driven decision making...

m ...where you listen to your customers
o Not your gut
o Not your designers
o Not the HIPPO
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A/B Testing: How?

m Step 1: Define a business hypothesis framed in
terms of the metric 6 you wish to optimize

m Step 2: Translate the the business hypothesis into a
statistical hypothesis:

HO: QC — QT VS. HA: 9(; * QT
HO: QC = QT VS. HA: QC < QT

HO: 9(; < QT VS. HA: QC > QT
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A/B Testing: How?

m Step 3: Define and produce your experimental
conditions

m Step 4: Determine how many experimental units are
required in each condition (i.e., sample size
determination): ng, nr

m Step 5: Collect the data

{xl,x2, xnc} and {yl,yz, ’ynT}

m Step 6: Estimate the metric of interest in each
condition: 8. and 6
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A/B Testing: How?

O Step 7. Determine whether the difference between
6. and 6 is statistically significant

o t-test (F-test)
o Z-test (y*-test)
o Permutation test

o But usually just a Z-test
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Other Strategies

m Many more sophisticated experimental design and
analysis strategies are available:

o Factorial designs

o Fractional factorial designs
o Response surface designs
o Multi-armed bandits
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SO WHY IS THIS
HARD?
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FAILING TO DEFINE A
USER
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User identification

m What is a user?

m |ldentification strategy:

- Software based identification

m Web cookie, file on the hard drive
- Hardware based identification

m Serial numbers (IDFV on mobile)
— Required login

m 3" party (Facebook, Twitter)

m 15t party (roll your own)



Most common

m Some Combination:
- No login required until a threshold achieved
- Login “optional” but gives additional features
- Different accounts that may/may not be linkable
m Quora
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Who cares”?

m A “User” may experience multiple experimental treatments:
— Nick has no login and is assigned to treatment group A

— Nick creates an account and is assigned to group
treatment B

— Nick uses Twitter login on desktop and FB login on
mobile. Accounts not linked, one in group A and one in
group B.

— Nick sign up to the news letter with two different email
addresses and looks for the best deals in any A/B
situation
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Result

m For knife-edge conclusions, a small percentage of
users being misidentified can swing the results

m Systematic misidentification (especially) can skew a
test completely

- 1% of users have two accounts, but 100% of
those users choose experience treatment B.
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Solution

1. Well defined tests:
— Avoid obvious identification issues
— Focus on subsets of users (post account creation,
users who do not cross play, etc.)
2. Rely on organizational momentum:

— Define a framework for testing which avoids these
iSSues

— Organizations tend to have momentum. Once it’s
done once, rely on “This is how we do it.”
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FAILING TO GET THE
RIGHT RESULTS
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What is peeking?

m Peeking is the phenomenon whereby you regularly
check the results of the experiment before it finishes

m Peeking can be a good thing!

— Make sure the experiment is not negatively
Impacting other important metrics

— Verify experiment is running correctly

m The problem arises when, as a result of peeking, you
decide to end the experiment early
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Example

m | set up my experiment:

- | need 1,000 users in both the Treatment and
Control group

m On the first day, | look at my data:

Treatment 150 10%
Control 150 5%

— The conversion rate in the Treatment group is
twice that of the Control. Should we stop the test?
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Why is this a problem?

m By stopping the experiment early you have not
observed enough data to be confident in your
conclusion

o Just because the results suggest a winner or a
significant difference at one point in time does
not mean that the results won't change as more
data Is collected



Why is this a problem? .
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Why is this a problem?

m When you stop the experiment you are rejecting the
null hypothesis

m Which means you might be making a Type | error

m And by stopping the experiment early the chances
you make a Type | error are much higher than the
prespecified statistical significance («)
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Why is this a problem?

lllustrative Simulation

m n. =ny = 1,000 data points are drawn
independently from the N(0,1) distribution

m The observations are used to perform a Z-test of
HO: 9(; < QT VS. HA: 9(; > QT

m Because 6, = 6, = 0 we should not reject H, very
often (no more than ax100% of the time)
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Why is this a problem?

m To study the consequences of peeking, we peek -
and end the experiment if a significant result is
indicated - at regular intervals

m Repeat this 10,000 times

m The Type | Error rate is the fraction of the 10,000
simulations that an experiment is ended prematurely



Why is this a problem?

Q
-

0.6 0.8
.
.
.

Type | Error Rate
04

Number of Peeks
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What is the solution?

m Sequential Testing

o An analysis method where the sample size is not
fixed a priori

o Data are accumulated and analyzed sequentially
until a stopping rule is met

o Stopping rule is based on a and f-spending
functions

o Resulting lift estimates need to be bias-corrected
o More complex to implement
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What is the solution?

m Avoid having non-sophisticated users end tests early
- Presentation layer:
m Modify presentation with explicit warnings
m Hide results

m Require test to have a minimum number of units (as
part of the the design)

Observations Collected Conversion Rate

Treatment 150 30% 10%
Control 150 30% 5%
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FAILING TO LIFT OFF
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Hmmmm... ?

m YOou run a test

m [reatment effect has 5% higher revenue than control

u 30 you make the change, but revenue only increases by
%

m [his happens on every test.

Treatment Estimated Diff  Actual Diff
Test #1 17% 12% 5% 2%
Test #2 5% 2% 3% 1.8%
Test #3 % 3% 4% 3.2%
Test #4 9% 4.5% 4.5% 4%
Test #5 8% 6% 2% 1.4%
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So what is this bias?

mletd =0, — 07 be the true unknown treatment
effect (aka: lift)

m This Is estimated by:
S — éc — éT — X — 17
m This is an unbiased estimate of lift:
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So where’s the problem?

Problem:
m This isn't how we estimate lift in practice

m In practice lift is only ever estimated if the null
hypothesis is rejected

m For illustration assume we’re testing the hypothesis
HO: 9(; < QT VS. HA: QC > QT
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So where’s the problem?

| |
) W

Distribution of X - Y
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So where’s the problem?

Problem:
m So what we’re actually estimating in practice is

HX—ﬂX—YZw]
not
E[X —Y]

Note: w = o xz* where ¢ = SD[X — Y] and z* is the
appropriate critical value of N(0,1) determined by «
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So where’s the problem?

—)

Problem:
When
HO: 9(; < QT VS. HA: QC > QT
then
w
o o (
E[JX-Y|X-Y>w]|]=6+0
1—@(

which is strictly greater than 6

w—0

o)

)
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How big a problem is this?

Overestimation (as a % of &)

400 600 800 1000

200

— 0, =0.01
— 0,=0.05
_— H'1 =01

0.00

0.01
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0.03

0.04

0.05
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So what can we do?

m Accept that the lift estimated from your experiment
IS an overestimate

m Sadly, the statistics behind estimating this are
difficult so can’t just “undo” it

m Presentation layer:

- Add “Max Difference” or add an “Estimated” lift to
the presentation.
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FAILING TO DESIGN
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What is Interference?

m Problems of interference occur when your
experimental conditions become contaminated

m This typically means that the Stable Unit Treatment
Value Assumption (SUTVA) has been violated

o SUTVA: The outcome observed on one unit should
be unaffected by the treatment assignment of
other units

= Your experimental conditions are no longer
Independent



What is Interference?

m Interference/contamination can happen for a variety
of reasons:

o Unit unidentifiability (spoken about before)
o Colliding experiments (be careful)
o Network interference

o Intra contamination -
o Inter contamination

What we will
focus on
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Network Interference

m What if my experiment effects other users and, in turn,
modifies their behavior?
m Facebook does an A/B test on “People you May Know”
o Control group sees “as is”
o Treatment sees “new flow”
m If treatment causes more friend requests, which then

increase friend requests for control users, then my lift
estimates will be incorrect

m What if my users directly communicate to each other about
test conditions?

— This will change behavior (test/control group may be
unhappy and do something negative)
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Network Interference

m Academically, this is solved by modeling as a
network/graph problem

- Many assumptions
- Specific knowledge / parameter estimates, etc.

m “‘Real world”

— Tend to either ignore or design around (geo-
fencing + light modeling)
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How bad is ignoring?

m Given that this “only happens a little” in my product,
how much does it matter?

m At the Meta, we don’t expect this to be too much of
an issue (outside of leaderboards our product does
not have too much of a social element)

m Go over two models and see what happens
— Correlation between treatment groups
— Correlation within treatment groups
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Between Treatment Groups

m Standard T-test of significance

m Users from one treatment group effect the outcome
of the other treatment group
m Specifically:
0 otherwise
m If user #1 in treatment A does something => effects
the outcome of user #1 in treatment B
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Between Treatment Groups
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Between Treatment Groups

m Our T Statistic:

Y, - Y,
T = 1’- 2
1 1
Nntn
m Without Interference: VAR|T] = 1

m With Interference: VAR|T] =1 — A
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Conclusion (correlation between groups)

m Since A can be positive or negative, so unless we
know it’'s value it’s difficult to conduct a test.

m This is a really simple, well specified case.

m One nice thing - In this case increasing our sample
size will naturally help things:

- While it doesn’t solve the interference it does
spread out our estimators (Y;,Y,) making the
interference less costly.



68

Between Treatment Groups
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What about correlation within groups?

m Once again, standard T-test of significance

m Users from one treatment group effect the outcome
of the other treatment group

m Specifically:

Ac?ifi +k

COV (Y, Y ) = | o2 ifi=k

m Note that j € (4, B). We assume zero correlation
between groups
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Within Treatment Groups

m Our T Statistic:

Y, - Y,
T = 1’- 2
1 1
Nntn
m Without Interference: VAR|T] = 1

m With Interference: VAR|T] =1+ (n—1) 1
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Conclusion (correlation between groups)

m Since A can be positive or negative, so unless we
know it’'s value it’s difficult to conduct a test.

m This is a really simple, well specified case.

m Increasing the sample size in this case makes
Interference worse.
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How to handle interference

m Academically:
- Network modelling

— Econometric (but-for analysis)
- Matched-pairs experimental design (geo-fencing)

m All of these are difficult and costly (man power)
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How to handle interference

m So... I'm still not sure

m In the short term, try to avoid experimental
situations that might make it worse:
- Social offers
- Leaderboards functionality
— Tie-in testing (adding social logins, rewarding for
streaming, etc.)

m In particular — probably (technology side), make
these types of test costly to do



CONCLUSION
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Conclusion

m While a lot of experimentation is well-known, the
details of implementation are difficult

m Concepts like peeking, estimating lift and
Interference are “solved” academically

m Putting that solution into practice is incredibly
difficult which is why understanding them = getting
good jobs )



YOU AND YOUR JOB
SEARCH



JOB SEARCHES ARE

TERRIBLE
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Why is getting a job difficult?

m Getting a job is a bilateral “asymmetric information
problem”

m What's that mean?

- Bilateral: two-parties (you and the company)

- Asymmetric information: each of you know something,
but you can’t easily and credibly disclose it

m ‘I'm a hard worker”
- Problem
m Yea.. It is a problem

m [n this environment: Matches are difficult and sub-
optimal
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What do you (job seeker) see?

m You apply to hundreds of companies
— Your friend applies to 1 job and gets it

m You don’t hear back

m Why not? A few options:
- Underqualified
- Bad Resume
- Bad Cover Letter
- Bad LinkedIn/Online Presence
- Bad IRL Presence
- Bad Luck

m How do you know which one is you?
— Hint: You won't



80

What does the company see?

m A job posting is created which contains a bunch of
information about the job

m The job posting has requirements (some firmer than
others)

m Applications come in, hundreds at a time

m All are nearly indistinguishable: Everyone is a talenteaq,
hard-working, unique and exceptionally smart person.

m Phone interview tons of people. Most fail there.
Eventually (hopefully) one get hired.

m For companies this is incredibly frustrating.
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End up with a dirty, imperfect match

m Because of asymmetric information:
- Many people apply to jobs they have no shot at
— Companies filter out good candidates all the time

m The final match is not optimal and nearly random.

m For you, this feels terrible. All this energy, effort and
work for nothing.

m Moral:
DON’T LET THE JOB SEARCH GET YOU DOWN. IT ISN’T A MIRROR.



“FUN" ANECDOTES




Anecdote #1.: Hiring a Data Analyst at
Sega

m | put up a job posting for one week.
m The job posting said:

— Cover letter required

- SQL knowledge preferred

— Lots and lots of other things

m 500 applications in 5 days
m Solution?
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Anecdote #2

m Senior job search, but still pretty common
m Will they hire from MSU?

m How many jobs are like this, but don’t say it?

We are recruiting strong experienced engineers to build our next-gen Big Data predictive
analytics platform & products with a focus on B2B marketing/sales. In particular, we're
recruiting a strong Devops engineer to join a talented team with background from top schools
(such as Harvard, MIT, Stanford, Tsinghua, UC Berkeley, U Penn, etc) & top software/tech
companies & successful startups (such as Amazon, Apple, Google, Salesforce, ServiceNow,
VMware, Zynga, DemandTec, ProfitLogic, etc).

Required qualifications:



Anecdote #3: USF's MSDS Program

m Entry level data science positions

m Statistics:
— Average number applied: ~85
- High: ~400
- Low: 3

m Zero correlation with GPA
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Anecdote Take-aways

m You aren’t special (to the company)
m You are at disadvantage (not MIT)

m [t can take a ton of time, energy and effort with no
feedback
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SOME GOOD NEWS...




Being organized (really) helps...

m There are only five things you can do to get a job:
1. Improve your docs (Resume, Linkedln, Cover Letter)
2. Network
3. Interview Prep
4. Market yourself
5. Apply to jobs
m Having a plan & being efficient = less energy and effort
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4 EASY PIECES OF

ADVICE




1. Optimize your actions

m Everyone (including me) tends to only work on some
of those 5 things.

m “‘Diminishing Marginal Returns”

m |f you are a introvert-grammar fiend (like me), your
docs are probably already OK, but you've spent no
time networking.

m Make sure that you are doing all 5 activities.

90



2. Be Organized / Always Be Learnin’

m Every time you apply / interview / get rejected:
- Document it.

m What application paths are working for you? What
types of companies are responding?

m Every question you get - did you answer it “the
best”?

m What could you have done better?

91



3. Own your image/narrative

m Everything on your resume / LinkedIn:
- Why did you do it?
- What did you do?
- Why did you leave?

m Have Intentionality for everything.

m DO NOT BE DESPERATE.
— “Actively looking for a job”
- This => TRASH IT.
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4. Logistics of the interview

m In person: be ready for anything.
— Dress
- Food, Water, Coffee (Bring your own)
- Copies of your resume

m Zoom: be ready for anything.
- Dress
- Food, Water, Coffee
- Battery
— Quiet Place & Background
- Headphones



THE END!



ON'T WANT,



