
D
RA
FT

Chapter 1

Rows and Columns

1

D
RA
FT

Contents

1 What is a Relational Database . 3

2 Selecting Columns . 6

3 WHERE: Filtering rows . 7

4 Null . 9

5 ORDER BY and LIMIT . 11

6 Column Numbering . 16

7 Where are we: A Note on Scope . 17

2

D
RA
FT

1 What is a Relational Database

• A database is a collection of any data:

– Could be text files, a list of names, phone numbers, audio files or images.

• This is quite broad – what makes a database Relational?

– Cheap Answer: A database is relational if it follows the Relational Data Model

– Longer Answer: The Relational Model is a system of storing and organizing data proposed by
Edgar Codd in the 1960’s and 70’s. Codd proposed a set of 12 rules.1 Any database system
which follows these rules has a number of important features:2

• Codd’s 12/13 Rules:

0. The foundation rule: For any system that is advertised as, or claimed to be, a relational data
base management system, that system must be able to manage data bases entirely through its
relational capabilities.

1. The information rule: All information in a relational data base is represented explicitly at
the logical level and in exactly one way – by values in tables.

2. The guaranteed access rule: Each and every datum (atomic value) in a relational data base
is guaranteed to be logically accessible by resorting to a combination of table name, primary
key value and column name.

3. Systematic treatment of NULL values: NULL values (distinct from the empty character
string or a string of blank characters and distinct from zero or any other number) are supported
in fully relational DBMS for representing missing information and inapplicable information in
a systematic way, independent of data type.

4. Dynamic online catalog based on the relational model: The data base description is
represented at the logical level in the same way as ordinary data, so that authorized users can
apply the same relational language to its interrogation as they apply to the regular data.

5. The comprehensive data sublanguage rule: A relational system may support several
languages and various modes of terminal use (for example, the fill-in-the-blanks mode). However,
there must be at least one language whose statements are expressible, per some well-defined
syntax, as character strings and that is comprehensive in supporting all of the following items:

– Data definition.

– View definition.

– Data manipulation (interactive and by program).

– Integrity constraints.

– Authorization.

– Transaction boundaries (begin, commit and rollback).

6. The view updating rule: All views that are theoretically updatable are also updatable by
the system.

1Like a good computer scientist, his rule list starts at zero, so there are actually 13 rules.
2These descriptions below were copied from Wikipedia, which I assume copied from the original paper.

3

D
RA
FT

7. Possible for high-level insert, update, and delete: The capability of handling a base
relation or a derived relation as a single operand applies not only to the retrieval of data but
also to the insertion, update and deletion of data.

8. Physical data independence: Application programs and terminal activities remain logically
unimpaired whenever any changes are made in either storage representations or access methods.3

9. Logical data independence: Application programs and terminal activities remain logically
unimpaired when information-preserving changes of any kind that theoretically permit unim-
pairment are made to the base tables.4

10. Integrity independence: Integrity constraints specific to a particular relational data base
must be definable in the relational data sublanguage and storable in the catalog, not in the
application programs.

11. Distribution independence: The end-user must not be able to see that the data is distributed
over various locations. Users should always get the impression that the data is located at one
site only.

12. The nonsubversion rule: If a relational system has a low-level (single-record-at-a-time) lan-
guage, that low level cannot be used to subvert or bypass the integrity rules and constraints
expressed in the higher level relational language (multiple-records-at-a-time).

• While there are many ways that these rules could be executed, the modern “Relational Database” is
quite standard. On the language side, SQL is used as the primary programming language and a set
of objects, discussed below, are used to conform to the rest of the rules.5

Figure 1.1: Database Objects

• Relational databases consist of the following objects:

– A tuple, or row, is a single observation, like you would find in Excel.

– An attribute of a tuple is a column and is defined by both a name and type.

– A relation or table is a collection of rows and their attributes. It is comparable to a worksheet
in Excel. Importantly, tuples are not ordered in a relation or, to state it alternatively, row
order is arbitrary.

3The physical level consists of the physical storage of the data. Things like compression type, adding or removing a new
hard drive or changing the directory that the database is stored in are considered “Physical Level”.

4The logical level consists of the concept level logic sitting on-top of the physical layer. This includes adding and subtracting
columns, changing an index or otherwise modifying how the information is stored without making underlying changes to the
data in the database.

5While there is chatter about the “exact” specification of what an RDMS is and whether modern database systems actually
follow the rules – that conversation is not of interest to practitioners.

4

D
RA
FT

– A collection of relations is a schema and can be compared to an Excel workbook with multiple
worksheets. Taking the Excel analogy further, just as it is straightforward to access data on
different sheets, but within the same Excel file, it is straightforward to access data in a database
that is within the same schema.

– A collection of schemas is a database. A database can be thought of a directory full of Excel
files, each with their own set of worksheets. Continuing the Excel analogy: while data can be
accessed between different Excel files, it can be difficult; that same principle applies to databases:
accessing data in two different schemas is not trivial.

• Modern relational databases use “dot” notation when referring to items in a database:

database.schema.table.column

Since rows are unnamed in relational databases there is no method to reference a row.

• The data stored in a relational database is strongly typed. Each column of data is defined as a certain
type (think integer or string) which is defined by the operations that can act on it. For example, you
can multiply numbers, but you cannot do the same to strings.

• Relational Databases work well when you have structured data or data with a high-degree or or-
ganization. For example, information such as “age”, “first name”, “last name” and “occupation”
are easily stored in relational databases. Data without consistent structure, such as those collected
from multiple sources or those with complex structures, such as the information contained within a
personal history, tend to best stored in other structures.

• Relational databases are accessed using “Structured Query Language” (“SQL”) and pronounced
“Sequel”.

• Importantly, relational databases are boring. They are designed to be warehouses of data, but NOT
to do data analysis. The most common use case for relational databases is that they store information
that is too large to put on a single computer. When a user or process wishes to do analysis, they
connect to the database and extract only the information necessary to do their work. In other
words, the database is useful for storing and accessing data, but not for doing any data science or
analytics. In SQL there are no functions for “logistic regression”, “random forrest”, “anova” or any
other common standard statistical techniques.

• Relational databases are generally client-server systems. In order to access data within a database
the server must be up and running and a client needs to be configured to interact with it. This can
happen in many different ways:

– Both the client and server can be running on the same physical computer.

– The server can be in the cloud and a user may be anywhere in the world.

– The server could be in a storage room or under a desk and the client could be somewhere in the
office.

• The parameters required to connect to most SQL systems include a (1) a host, (2) a username, (3) a
password (4) a port to connect on and (5) the database name. The combination of these four items
is referred to as a “connection string”.

• When we refer to different SQL variants, such as MS-SQL, Vertica or MySQL, we are talking about
the program that is run on the server, not on the client. There are clients that can connect to multiple
server variants and there are clients which are specific to ones.

5

D
RA
FT

• There are many clients for SQL. One you may consider is DataGrip, by the makers of PyCharm, so if
you like using that interface, use it. Others that I tend to recommend include PopSQL and Postico.6

• SQL is a declarative programming language. In a declarative language, the programmer describes
the output while not explicitly detailing each step to create that output. The opposite of declarative
programming is imperative programming which focuses on how a program should operate in a step-
by-step manner.7

2 Selecting Columns

• Iowa Cars: The first dataset that we will consider is a database of car registrations from Iowa.
Details about this dataset, including how to load it and its data dictionary can be found in Appendix
A, Section 2.

• Let’s begin with the following query template:

SELECT ______________ <- Comma separated List of Columns
FROM ______________ <- Table From which columns are selected from
; <- Sometimes necessary

• The query begins with the SELECT clause which states which columns of data we are interested in
having our database return.

• The FROM clause tells the database which table to look for the data .

• Why is the “;” only “sometimes” necessary? It depends on your SQL client. The semi-colon represents
the end of a statement and some SQL clients will automatically place one. The use of a semi-colon
is highly recommended!

• Let’s say that we have the cls.cars table structure and we want to select the “CountyName” column.
We would write the following query:

select CountyName from cls.cars;

which would return a single column and all 41,202 from the table.

• SQL ignores hard returns, additional white space and is generally case insensitive8 so we could write
the above query like this:

SeLeCT
CountyNAMe FRom

CLS.cARS;

and it would return the same data as above.

• Selecting multiple columns is straightforward:

select countyname, annualfee
from cls.cars;

6This site https://wiki.postgresql.org/wiki/PostgreSQL_Clients contains an up to date list of clients which
are usable in PostgreSQL.

7Languages such as Python and R are generally considered imperative.
8There are a few exceptions to case insensitivity, but they are outside the scope of this class.

6

https://wiki.postgresql.org/wiki/PostgreSQL_Clients

D
RA
FT

which will return two columns and all rows.

• To return all columns, we use an “*”:

select * from cls.cars;

which will return all rows and all columns from the database.

• Be careful with the above command, SQL servers are powerful and assume you know what you are
doing. If you ask for all the data from a large table... it will give you all of the data.

3 WHERE: Filtering rows

The select operator chooses which columns to return to the client while the WHERE filters out rows based
on their contents.

• The WHERE syntax uses standard Boolean style logic to evaluate row-inclusion on a row-by-row
basis.

• The WHERE clause occurs after the FROM clause, such as in this example:

select countyname, vehicletype
from cls.cars
WHERE vehicletype = 'Semi Trailer';

which which returns 1,683 rows.

• We can select all columns which fulfill a certain criteria:

select * from cls.cars where vehicletype = 'Semi Trailer';

which returns all columns with this vehicle type.

• Strings themselves, such as ‘Semi Trailer’, are case-sensitive, so the query

select countyname
from cls.cars
where vehicletype = 'Semi TRAiler';

will return zero rows.9

• When selecting strings we use single quotes. Double-quotes should be reserved for referencing
database objects (such as tables, columns and schemas). Most databases allow users to define objects
with special characters, such as spaces. We use double-quotes in these situations to refer to these
objects.10 For example, if a database had a column with a space in it, such as “user name” then to
select that column would require using double quotes:

select "user name" from table;

9Surprisingly, this is not true for all variants of SQL. MySQL, which may be the most popular variant of SQL, is case-
insensitive by default.

10Personally, I strongly believe that special characters should be avoided when defining database objects, but it sometimes
occurs.

7

D
RA
FT

• With numbers, we can use any standard comparison operator (=, >,<,<=, >=) to select rows, such
as in the below,

select * from cls.cars where registrations > 10000;

returns 1,248 rows.

• There are two ways to state inequality: “! =” or “<>”.

• To combine multiple criteria we use “AND” and “OR” clauses:

select

*
from

cls.cars
where

registrations > 1200
and countyname = 'Wright';

returns 70 rows, while

select * from cls.cars
where

registrations > 1200
and registrations <= 3000
and countyname = 'Wright';

returns 21 rows, or all information from Wright county where the registrations are between 1,200 and
3,000 (inclusive). A more complicated example,

select * from cls.cars where
(
(registrations > 1200 and registrations <= 3000)
or
(registrations > 4000 and registrations <= 4200)
)
and countyname = 'Wright';

returns 24 rows.

• Parenthesis dictate the order of operations, so this query returns all rows from Wright County with
between 1,200 and 3,000 registrations or 4,000 and 4,200 registrations. To understand this query,
consider the following potential values, with how they would evaluate in the above condition:

Countyname Registrations Yes or No

Wright 2000 Yes
Wright 4100 Yes
Right 3500 No
Wright 5000 No

8

D
RA
FT

4 Null

• Relational databases use 3-value logic. Unlike some logic systems which solely consist of True and
False, 3-value logic systems include a third value: Null. Null is sometimes sometimes called “un-
known” or “missing”, but be careful about this phrasing as different data sources may represent those
concepts separately.

• The truth tables describes how the three value logic behaves. Tables 1.2, 1.3 and 1.4 demonstrate
how Null is handled in a range of situations – the key things to keep in mind is that Null does not
evaluate Null, it is it’s own, separate value.

| AND | TRUE | FALSE | NULL |
|-------+--------+---------+--------|
TRUE	TRUE	FALSE	NULL
FALSE	FALSE	FALSE	FALSE
NULL	NULL	FALSE	NULL

Figure 1.2: AND 3-value logic

| OR | TRUE | FALSE | NULL |
|-------+--------+---------+--------|
TRUE	TRUE	TRUE	TRUE
FALSE	TRUE	FALSE	NULL
NULL	TRUE	NULL	NULL

Figure 1.3: OR 3-value logic

| NOT | |
|-------+-------|
TRUE	FALSE
FALSE	TRUE
NULL	NULL

Figure 1.4: NOT 3-value logic

• Most conditional expressions are predicated on “Success” being “True”, which means that Null tends
to behave like “False”. For example, in a WHERE clause, if the resulting expression evaluates Null
it is not returned. So this query, which returns Null for every row, will yield zero rows:

select * from cls.cars where null;

• Null thus represents a special class of data in the database. Consider the following query, which
returns 3 rows of data:

SELECT
year, registrations, annualfee

FROM
cls.cars

WHERE
registrations > 217000
and year < 2010;

year registrations annualfee
------ --------------- -----------

2006 218883
2005 218235
2008 217073 24160802.0

9

D
RA
FT

• The first two rows in “annualfee” are null. Let’s put a further restriction on this columns and see
what happens:

SELECT
year, countyname, registrations, annualfee

FROM
cls.cars

WHERE
registrations > 217000
and year < 2010
and annualfee < 25000000;

year countyname registrations annualfee
------ ------------ --------------- -----------

2008 Polk 217073 24160802.0

This query will return 1 row (the third row from the previous query). In particular, Null annual fees
are not evaluated to be true. Just to be clear, the only row that will be returned by this query, of
the three that were returned will be the third row which did not have a Null annualfee.

• The query above only returned the non-Null annualfee rows when we put a restriction that annualfee
had to be less than 25,000,000. Let’s put a restriction in the opposite direction, this time only
returning rows greater than 25,000,000:

select
year, countyname, registrations, annualfee

from
cls.cars

where
registrations > 217000
and annualfee >= 25000000
and year < 2010;

year countyname registrations annualfee
------ ------------ --------------- -----------

This query returns zero rows!

• So, if we have no restriction on annualfee it returns 3 rows. If we restrict annualfee to above
25,000,000, it returns 1 row and if we restrict annualfee to below 25,000,000 then it returns 0 rows.
What happened? A key relational databases feature is the following:

NULL behaves like FALSE in WHERE CLAUSES!

• In the previous example, for the first and second row the database evaluated NULL ≥ 25,000,000
and said that this is not true. The database also evaluated Null < 25,000,000 and found it to be
false. In other words, Null evaluates False in a boolean expression.

• Since Null behaves like False we need to use a different operator to compare it; this operator is IS:

10

D
RA
FT

select
year, countyname, registrations, annualfee

from
cls.cars

where
registrations > 217000
and annualfee IS NULL
and year < 2010;

year countyname registrations annualfee
------ ------------ --------------- -----------

2006 Polk 218883
2005 Polk 218235

which will return the two rows with a Null annualfee.

• To remove NULL values we use the IS NOT expression:

select
year, countyname, registrations, annualfee

from
cls.cars

where
registrations > 217000
and annualfee is not NULL
and year < 2010;

year countyname registrations annualfee
------ ------------ --------------- -----------

2008 Polk 217073 24160802.0

which will return only the row with a non-Null annualfee value.

• What about this query?

select
year, countyname, registrations, annualfee

from
cls.cars

where
registrations > 217000
and annualfee = NULL;

Ha! Trick question: this will return zero rows because Null always evaluates False!

5 ORDER BY and LIMIT

• To sort the data that is returned by a query we use an ORDER BY clause:

11

D
RA
FT

select
registrations, *

from
cls.cars

order by registrations ASC;

registrations year countyname motorvehicle vehiclecat vehicletype [...]
--------------- ------ ------------ -------------- ------------ ------------ [...]

1 2015 Poweshiek Yes Truck Tractor/Truc [...]
1 2014 Dallas Yes Truck Tractor/Truc [...]
1 2014 Jefferson Yes Truck Tractor/Truc [...]
1 2013 Tama Yes Truck Truck Tracto [...]
1 2011 Wapello Yes Truck Truck Tracto [...]

[...]

will return every column of data in the database ordered by registrations from low-to-high (Ascend-
ing).

• Data can also be sorted “Descending” – from high-to-low:

select
registrations, countyname, year

from
cls.cars

order by registrations DESC;

registrations countyname year
--------------- ------------ ------

218975 Polk 2015
218883 Polk 2006
218235 Polk 2005
218211 Polk 2014
217540 Polk 2016

[...]

Running this query will return the Null annualfee rows first! Because annualfee Nulls are sorted as
if they are larger than non-Nulls, this implies that descending order returns them before non-Null
values.

• ORDER BY also works with character columns:

12

D
RA
FT

select
countyname

from
cls.cars

order by countyname desc;

countyname

Wright
Wright
Wright
Wright
Wright
[...]

will return the data, sorted by countyname ascending. For characters, DESC is reverse alphabetical
order, while ASC is alphabetical order. PostgreSQL sorts character data in a case insensitive manner.

• Under the default sort order (Ascending), Null values are last, which means that they are treated as
if (a) they are larger than non-Nulls, when numbers and (b) alphabetically last.

• The default sort order, if neither ASC or DESC is specified is ASC.

• Multiple sort orders can be combined:

select
countyname, year

from
cls.cars

order by countyname desc, year asc;

countyname year
------------ ------
Wright 2005
Wright 2005
Wright 2005
Wright 2005
Wright 2005
[...]

will return data sorted by countyname first, and then within common countyname’s sorted by year
(ascending).

• In order to limit the number of rows returned to the client we use the LIMIT command. For example,
the following query:

13

D
RA
FT

select

*
from

cls.cars
limit 10;

year countyname motorvehicle vehiclecat vehicletype tonnage [...]
------ ------------ -------------- ------------ -------------- --------- -- [...]

2008 Ida Yes Bus Bus [...]
2011 Jasper Yes Moped Moped [...]
2012 Harrison Yes Truck Truck 3 Tons [...]
2015 Palo Alto No Trailer Travel Trailer [...]
2016 Adair Yes Truck Truck 3 Tons [...]

[...]

returns every column in the cars table, but only 10 rows. Note that this is not the first 10 rows, it
is an arbitrary 10 rows. If you run the query again you may get a different set of rows!

• We can combine LIMIT with the rest of our commands:

select
registrations, annualfee

from
cls.cars

where
countyname = 'Scott'

limit 100;

registrations annualfee
--------------- -----------

31626 1700000.0
3 376.0

1779 553072.0
172 40480.0
2972 135942.0

[...]

will return 100 rows of data. Note that limit is evaluated after the where command, so as long as
there are 100 rows with countyname = ‘Scott’, this will return 100 rows.

14

D
RA
FT

The LIMIT clause is not present in all versions of SQL. Other SQL variants use alternative
syntax to limit the rows returned. The following table highlights those differences and presents
a query using each version:

Variant Syntax Example

MySql LIMIT select * from cls.cars order by annualfee asc limit
10;

MS-SQL TOP select top 10 * from cls.cars order by annualfee
asc;

Older Oracle rownum select * from (select * from cls.cars order by an-
nualfee asc) where rownum <= 10;

• A common use case for ORDER BY and LIMIT is to return the top X of something, like the query
below, which returns the five largest registration values:

select
registrations

from
cls.cars

order by registrations desc
limit 5;

registrations

218975
218883
218235
218211
217540

• Some other examples: Top 15 rows ordered by registrations:

select

*
from

cls.cars
order by registrations desc
limit 15;

year countyname motorvehicle vehiclecat vehicletype tonnage r [...]
------ ------------ -------------- ------------ ------------- --------- --- [...]

2015 Polk Yes Automobile Automobile [...]
2006 Polk Yes Automobile Automobile [...]
2005 Polk Yes Automobile Automobile [...]
2014 Polk Yes Automobile Automobile [...]
2016 Polk Yes Automobile Automobile [...]

[...]

• Top-15 rows, countyname only, where annualfee is not equal to zero.

15

D
RA
FT

select countyname
from cls.cars
where annualfee <> 0
order by registrations desc limit 15;

countyname

Polk
Polk
Polk
Polk
Polk
[...]

This query demonstrates that (1) we can order by columns that are not selected and (2) we can
remove both NULL and zero annualfees.11

6 Column Numbering

• In this section we introduce an SQL feature that make your life easier: using column number order
in an ORDER BY clause.

• Instead of putting the column name, we can use the column number to specify how we should order
the rows:

select
registrations
, countyname

from
cls.cars

where
annualfee <> 0

order by 1 desc
limit 15;

registrations countyname
--------------- ------------

218975 Polk
218211 Polk
217540 Polk
217073 Polk
216792 Polk

[...]

In the query above the “1” in the ORDER BY refers not to the number 1, but to the first column
position, which in this case is “registrations”. We can also use ASC, DESC and multiple sort orders
using this notation:

11Since NULL <> is always false this removes all the null annualfee values.

16

D
RA
FT

select
registrations
, countyname

from
cls.cars

where
annualfee <> 0

order by 2, 1 desc;

registrations countyname
--------------- ------------

4247 Adair
4137 Adair
4109 Adair
3916 Adair
3768 Adair

[...]

The data from this example is sorted by countyname first and then, within each county sorted by
the number of registrations. There are only a few operators that allow for column numbering. The
ORDER BY operator is one of them.

• The downside of using column numbering syntax is that if you change the select statement, such as
adding or subtracting a column the query will not raise an error, but will no longer return the same
data. For this reason a number of organizations avoid using this syntax and require full column name
expressions at all times.

7 Where are we: A Note on Scope

• A common issue that new SQL users have is how much detail to include when writing a query. For
example, if we assume that the database name is “sql class”, then the following two queries will
return the same data, though they look very different:

select sql_class.cls.cars.year from cls.cars;

and

select year from cls.cars;

• We call this issue scope. Scope is the region of a query where a particular name is valid. The standard
way that we write queries is to include the schema and table in the FROM clause, but only include
the column names in the rest of the query, unless those column names are not fully specified.

• Note that the table was written as “cars” and not “cls.cars” or something even more specific. This
may return an error for you depending on how your “search path” is set. The search path represents
where the database looks, by default, for tables. If you are working with data that is not in your
search path, you will need to include the schema name, otherwise the database will return an error.
In the notes for this class we will ignore issues surrounding this.12

12More information here: https://www.postgresql.org/docs/current/static/ddl-schemas.html

17

https://www.postgresql.org/docs/current/static/ddl-schemas.html

D
RA
FT

18

