
D
RA
FT

Chapter 6

Dates and Types

101



D
RA
FT

Contents

1 Date Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

2 Date Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3 Hard GROUP BY problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

102



D
RA
FT

1 Date Types

• In this section we’ll be consider how Dates are dealt with in SQL. As a reminder, Figure 6.1 has the
different types that most SQL standards subscribe too.

Common Data Types

Dates and Times

Interval

TimeStamp

Time

Date

Strings

Arbitrary length “text”

Fixed length “char”

Variable length “varchar”

Numbers

Fixed precision “Numeric’

Floating precision “Float”

Integer “Int”

Figure 6.1: Common relational database data types

Dates

• Date and time functions are the least standardized portion of the SQL language. Different variants
use different functions and conventions when in this area.

• Dates and times are complicated. Timezones, server and client location and configuration all yield
small changes in how the database operates and what is returned in different operations.

• Date and times should not be considered “standard” between SQL variants. Different servers use
different functions, types and standards. Whenever working with a variant of SQL you are unfamiliar
with make sure to verify that it is doing what you expect.

• There are four standard data types in Postgres:

1. Dates: Stores a date, ranging from 4713 BC to 5874897 AD.

2. Time: Stores only a time with a resolution of 1 microsecond.

3. Timestamp: Sometimes referred to as a “datetime.” Contains both a date and a time and
ranges from 4713 BC to 294276 AD.

4. Interval: Time interval (such as “1 Year” or “2 hours”). These do not have a start or end and
only represent a length of time.

• Timezones are problematic: Dates do not contain a timezone, but time and timestamp may have
them. Depending on how the server and client are set-up, timezones may also prove otherwise
problematic. Often it feels like timezones are applied in a haphazard way, so be careful!

103



D
RA
FT

• Daylight savings times, for example, starts and ends on different dates in Europe then in the United
States.

• Because of all these issues, many database administrators (including myself) recommend storing
times using Unix or epoch time, which is the number of seconds since 1/1/1970 in UTC. Since this
is a specific point in time, there is no timezone confusion.

2 Date Functions

• There are four classes of operations we want to do with date objects:

1. Convert a string to date: We can do this a few different ways, but these are types of cast
operators. We won’t get into this too much. In simple cases we can do the “obvious” and it
works.

select '2012/03/12'::date as dt

dt
----------
2012-03-12

select '2012/03/01 11:35:00'::timestamp as ts

ts
-------------------
2012-03-01 11:35:00

select '1 month'::interval, '2 hours'::interval as dt

interval dt
---------------- -------
30 days, 0:00:00 2:00:00

A reminder that the double colon notation is specific to Postgres. There are alternative functions,
such as to_timestamp and to_date which exist in other variants which do similar things.

2. Convert a date to a string: This isn’t something that we do that much in SQL, but if
required we use the to_char function.

3. Extract part of a date: There are two functions which do this, date_part or extract.
These functions extract a specific value from a date or timestamp and return it as a different
type (frequently an integer). A few examples below:

104



D
RA
FT

select date_part( 'month', '2012/03/12'::date) as mnth;

mnth
------

3

select date_part( 'hour', '2012/03/01 11:35:00'::timestamp ) as hr;

hr
----
11

select extract( 'dow' from '2012/03/01 11:35:00'::timestamp) as day_of_week;

day_of_week
-------------

4

Note that dow starts with Sunday (at zero) and goes to Saturday (6)

4. Basic date math and comparisons: To do basic date math, such as adding a 3 days or
subtracting an hour, we use the addition and subtraction operators with intervals:

select '2001-01-01 01:00:00'::timestamp + '21 hours'::interval as TS;

ts
-------------------
2001-01-01 22:00:00

Comparison operators (<,>,=) behave as expected. One caveat is that when you compare a
timestamp with a date, the date is converted to a timestamp for midnight of that day:

select now() < current_date as c1, now() > current_date as c2;

c1 c2
----- ----
False True

• While the above are the four most common operations you want to do, there are some additional
functions which are nice to know about:

– current_date and current_time / now() return the full timestamp, the current date and
the current time.

105



D
RA
FT

select now(), current_date, current_time

now current_date current_time
-------------------------------- -------------- ---------------------
2023-08-14 20:50:04.440825+00:00 2023-08-14 20:50:04.440825+00:00

– date_trunc: This function truncates a date or timestamp down to a certain precision. Note
that this will return a timestamp with the values beyond the specified precision set to their
lowest possible value. For example:

select date_trunc( 'month', '2012/03/12'::date) as mnth;

mnth
-------------------------
2012-03-01 00:00:00+00:00

select date_trunc( 'hour', '2012/03/01 11:35:00'::timestamp ) as hr;

hr
-------------------
2012-03-01 11:00:00

In both of these examples the value being acted on loses its precision. The object returned is a
timestamp with all precision below a certain threshold set to the smallest possible value.

– date(): Returns the date of a given timestamp in date format. This does a type conversion,
which is more than simply truncating the timestamp.

select date( '2012/03/01 11:35:00'::timestamp ) as dt;

dt
----------
2012-03-01

Unfortunately, dates can be difficult to work with, as the following examples demonstrate:

• Seemingly arbitrary math. You can add integers to dates, but not to timestamps

select now() + 1 as dt;
ERROR: operator does not exist: timestamp with time zone + integer

106



D
RA
FT

select date( now() ) + 1 as dt;

dt
----------
2023-08-15

• BETWEEN may not work as expected. For example:

select now() between date(now()) -1 and now() as TF;

tf
----
True

Now is between yesterday and now

select now() between date(now()) -1 and date(now()) as TF;

tf
-----
False

but now is not between yesterday and today.

select date(now()) between now() and date( now()) + 1 as TF;

tf
-----
False

but today is between now and tomorrow.

• Most annoying of all? Every variant of SQL is slightly different.

• Epoch time is pretty great at solving some of these problems, but at the cost of interpretation:

– Math works as expected.

– BETWEEN works as expected.

– No time zone ambiguity.

• For the rest of this section we’ll do a few time related problems using the NYC MTA data.

• Let’s return the average cash volume of cars by day of the week, inbound traffic only:

107



D
RA
FT

select
date_part('dow', mtadt ) as dow
, avg( tvol) as avgvol

from
(select

sum( vehiclescash ) as tvol
, mtadt

from
cls.mta

where
direction = 'I'

group by 2) as innerQ
group by 1
order by 2 desc;

dow avgvol
----- --------

6 87392.9
0 82829.7
5 78129.6
4 69274.6
1 67410.7

[...]

• By year, what percentage of cars which pass through a toll plaza use an EZ-pass?

select
date_part('year', mtadt) as yr
, sum(vehiclesez)::float / (sum(vehiclesez) + sum( vehiclescash)) as pct_EZ

from
cls.mta

group by 1
order by 1;

yr pct_ez
---- --------
2010 0.75715
2011 0.792285
2012 0.808791
2013 0.828819
2014 0.836587
[...]

• We can also create a time series of the number of inbound cars, by year and month, for Plaza #1
and #2:

108



D
RA
FT

select
date_trunc('month', mtadt)
, sum( case when plaza = 1

then vehiclescash else 0 end) as Plaza1Cars
, sum( case when plaza = 2

then vehiclescash else 0 end) as Plaza2Cars
from

cls.mta
where

direction = 'I'
group by 1;

date_trunc plaza1cars plaza2cars
------------------------- ------------ ------------
2010-01-01 00:00:00+00:00 427660 313278
2010-02-01 00:00:00+00:00 375918 274724
2010-03-01 00:00:00+00:00 462078 354619
2010-04-01 00:00:00+00:00 455395 353378
2010-05-01 00:00:00+00:00 487051 378600
[...]

• When moving in and out of date formats, you may have to rely on using special functions. Part of
the reason for this is because date and times require the user to specify the format. Consider the
following query:

select
mtadt
, hr
, to_timestamp( mtadt::varchar || ' ' || hr, 'YYYY-MM-DD HH24') as mta_ts

from cls.mta;

mtadt hr mta_ts
---------- ---- -------------------------
2013-10-14 16 2013-10-14 16:00:00+00:00
2013-10-14 16 2013-10-14 16:00:00+00:00
2013-10-14 17 2013-10-14 17:00:00+00:00
2013-10-14 17 2013-10-14 17:00:00+00:00
2013-10-14 18 2013-10-14 18:00:00+00:00
[...]

This query returns three columns: the date, hour and then it creates a timestamp object using the
command to_timestamp. This command takes in two strings. The first is a value to be converted
and the second is the format of that conversion. In this example we create a synthetic string made up
of the values of mtadt concatenated with a space and then the hour. This is passed to the command
and is then converted to a timestamp.

109



D
RA
FT

3 Hard GROUP BY problems

In this section we will look at some difficult GROUP BY problems using the MTA data as well as the
stocks data sets.

1. How many stocks (symbols) have 19 or more trading days for every month in 2010?

select
count(1) as ct

from
(select

symb
, count(1) as ct2

from
(select

symb
, date_part( 'month', retdate) as mn
, count(1) as ct

from
stocks.s2010

group by
1,2) as innerQ

where
ct >= 19

group by 1 ) as outerQ
where ct2 = 12;

ct
----
3106

2. Write a query which returns 12 rows and two columns. The first column should be month as an
integer and the second should be the number of trading days in that month. Do this for 2010 and
remember that dates only appear in the stocks table if they are trading days.

110



D
RA
FT

select
date_part('month', retdate) as mn
, count( distinct retdate) as trading_days

from
stocks.s2010

group by 1;

mn trading_days
---- --------------

1 19
2 19
3 23
4 21
5 20

[...]

3. Create a table with the information above, this time in a wide format: one column per month with
a single row.

select
count( distinct case when date_part( 'month', retdate) = 1

then retdate else null end) as Jan
, count( distinct case when date_part( 'month', retdate) = 2

then retdate else null end) as Feb
...[OTHER MONTHS OMITTED]

, count( distinct case when date_part( 'month', retdate) = 12
then retdate else null end) as Dec

from
stocks.s2010;

4. Write a query which returns 12 rows and 3 columns from the 2010 data. The first column should
be month as an integer, the second should be the number of unique stocks which had an open over
$100 that month and the third should be the number of unique stocks with an open less than $50
that month.

111



D
RA
FT

select
date_part('month', retdate) as mn
, count( distinct case when opn > 100

then symb else null end ) as over100
, count( distinct case when opn < 50

then symb else null end ) as less50
from

stocks.s2010
group by 1;

mn over100 less50
---- --------- --------

1 68 2929
2 58 2947
3 65 2924
4 71 2925
5 68 2989

[...]

5. Repeat the above, but this time only include those stocks which are also in 2011.

select
date_part('month', retdate) as mn
, count( distinct case when opn > 100

then symb else null end ) as over100
, count( distinct case when opn < 50

then symb else null end ) as less50
from

stocks.s2010
where

symb in (select distinct symb from stocks.s2011)
group by 1;

mn over100 less50
---- --------- --------

1 68 2904
2 58 2924
3 65 2901
4 71 2903
5 68 2969

[...]

6. We define the yearly spread as the difference between the maximum closing price for a stock and the
minimum closing price for a stock over the year. Write a query which returns all stocks whose yearly
spread in 2010 is less than 1

2 the largest yearly spread (from all stocks) in 2011.

112



D
RA
FT

select
symb

from
(select max(cls) - min(cls) as ys2010

, symb from stocks.s2010 group by 2) as IQ
where

ys2010 < .5 * (select max(ys2011) as max_ys2011 from
(select max(cls) - min(cls) as ys2011

, symb from stocks.s2011 group by 2) as IQ2);

symb
------
A
AA
AAME
AAN
AAON
[...]

7. For stocks in 2010 return the following: (1) symbol, (2) month and (3) the difference between the
maximum closing price and minimum closing price for each month. Only include those stocks which
were traded more than 10 days that month.

select
symb, mn, diff

from
(select

symb
, date_part('month', retdate) as mn
, max(cls) - min(cls) as diff
, count(1) as ct

from
stocks.s2010

group by 1,2 ) as innerQ
where

ct > 10;

symb mn diff
------ ---- ------
A 1 2.339
A 2 1.7096
A 3 1.8097
A 4 2.382
A 5 4.0988
[...]

8. Return the data in the previous problem in a wide format – one column per month and one row per
symbol.

113



D
RA
FT

select
symb
, sum( case when mn = 1 then diff else null end ) as Jan
, sum( case when mn = 2 then diff else null end ) as Feb

[OTHER MONTHS OMITTED]
, sum( case when mn = 12 then diff else null end ) as Dec

from
(select

symb
, date_part('month', retdate) as mn
, max(cls) - min(cls) as diff
, count(1) as ct

from
stocks.2010

group by 1,2) as innerQ
WHERE ct > 10
GROUP BY 1;

114


